Identity and Inverse Matrices - Questions

🔒 Unlock Full Access

You're currently viewing a preview. Sign up or log in to access all 5 questions and complete solutions.

Question 1
29693

Which of the following is the identity matrix? 

A.

\(\left[ {\begin{array}{*{20}{c}}1&1\\0&0\end{array}} \right]\)

B.

\(\left[ {\begin{array}{*{20}{c}}0&1\\1&0\end{array}} \right]\)

C.

\(\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\)

D.

\(\left[ {\begin{array}{*{20}{c}}0&0\\1&1\end{array}} \right]\)

\(\left[ {\begin{array}{*{20}{c}}1&0\\0&1\end{array}} \right]\)

\begin{align}
&\text{Test } \left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]\\
&\begin{aligned}
\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right] \times\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] &=\left[\begin{array}{ll}
1 \times 1+2 \times 0 & 1 \times 0+2 \times 1 \\
3 \times 1+ 4 \times 0 & 3 \times 0+4 \times 1
\end{array}\right] \\
&=\left[\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right]
\end{aligned}\\
&\therefore\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \text{ is the identity matrix}
\end{align}

📚 Want More Questions?

There are 4 more questions available. Create your free account to access the complete question set with detailed solutions.