Linear Graphs and their Equations - Questions

Question 1
17639

Which equation represents the adjacent graph?

A.

\(\dfrac{x}{2} - \dfrac{y}{3} = 1\)

B.

\(\dfrac{x}{3} - \dfrac{y}{2} = 1\)

C.

\(\dfrac{x}{2} + \dfrac{y}{3} = 1\)

D.

\(\dfrac{x}{3} + \dfrac{y}{2} = 1\)

\(\dfrac{x}{2} - \dfrac{y}{3} = 1\)

\begin{align}
&\text{The intercepts are } (2,0) \text{ and } (0,-3)\\
&\begin{aligned}
\text{In } A: &\text{ when } y=0,\quad \; \frac{x}{2}=1 \rightarrow x=2\\
&\text{ when } x=0,\;-\frac{y}{3}=1 \rightarrow y=-3\\ &\therefore \frac{x}{2}-\frac{y}{3}=1\\
&\therefore A
\end{aligned}
\end{align}

Question 2
17640

The equation of the line that passes through the points \({\rm{A(3,}} - {\rm{1)}}\) and \({\rm{(}} - 2,1)\) is?

\(2x + 5y - 1 = 0\)

\begin{array}{l}
m_{A B}=\dfrac{1-(-1)}{-2-3}=\dfrac{2}{-5},\\
\;y-y_{1}=m(x-x,) \\
\;\;y-1=-\dfrac{2}{5}(x+2) \\
\,5y-5=-2x-4 \\
2x+5y-1=0
\end{array}

Question 3
17641

The correct inequation for the shaded half-plane in the adjacent diagram is?

A.

\(2x + 3y < 6\)

B.

\(2x - 3y > 6\)

C.

\(3x + 2y > 6\)

D.

\(3x - 2y < 6\)

\(2x - 3y > 6\)

\begin{align}
&\text{The intercepts of the line are }(3,0) \text{ and } (0,-2)\\
&\text{Using the intercept form of the line:}\\
&\begin{aligned}
\frac{x}{a}+\frac{y}{b}=1 \rightarrow \quad \frac{x}{3}+\frac{y}{-2}&=1 \\
2x-3y&=6 \quad \therefore \quad A \text { or } B
\end{aligned}\\
&\text{Consider B }\quad 2x-3y>6,\\
&(0,0) \text{ does not satisty this inequality. }\therefore B
\end{align}

Question 4
17642

The gradient m, and the y - intercept b of the line \(\dfrac{{2x}}{3} - \dfrac{y}{4} = 5\) are?

\(m = \dfrac{8}{3},\,\,b = - 20\)

\begin{align}
&\begin{aligned}
\frac{{2x}}{3} - \frac{y}{4}& = 5\\
\textcolor{red}{12} \times \frac{{2x}}{3} -\textcolor{red}{12} \times \frac{y}{4} &= 5 \times \textcolor{red}{12}\\
8x-3y&=60\\
3y &=8 x-60 \\
y &=\frac{8}{3} x-20 \\
\end{aligned}\\
&\therefore m=\frac{8}{3}, \;\; b=-20
\end{align}

Question 5
17643

Given that \(y\) is directly proportional to \(x\) and \(y = 37.5\) when \(x = 15\) then \(y = {\rm{?}}\)

\(y = 2.5x\)

\begin{aligned}
\text{Let }y&=k x\\
37.5 &=k \times 15 \\
k &=\frac{37.5}{15}=2.5 \rightarrow y=2.5 x
\end{aligned}