Coordinate Geometry of the Straight Line - Questions
Given that \(A( - 3, - 12),\) \(\,B(0,3)\,\) and \(C(4,b)\) are collinear then the value of \(b\) is?
The equation of the line that passes through the point \((1, - 1)\) and is perpendicular to the line \(y = 5x + 2\) is?
The equation of the line that is parallel to the line \(3x - 2y + 1 = 0\) and passes through the point \({\rm{(}} - 1,3)\) is?
The line \(ax - 3y = 4\) is perpendicular to the line \(2x + 3y = 5.\) The value of a is?
\begin{align}
&\begin{aligned}
2x+3y &=5 \\
3y &=-2x+5 \\
y &=-\frac{2}{3} x+\frac{5}{3} \\
\therefore m_{1} &=-\frac{2}{3}
\end{aligned}\\
&\begin{aligned}
ax-3y &=4 \\
3y &=ax-4 \\
y&=\frac{a}{3} x-\frac{4}{3} \\
m_{2} &=\frac{a}{3}\\
\end{aligned}\\
&\begin{aligned}
\rightarrow \quad m_{1} m_{2}&=-1 \\
-\frac{2}{3} \times \frac{a}{3}&=-1 \rightarrow a=4.5
\end{aligned}
\end{align}
Find the value of \(p\) if the line passing through the points \((2p,\,p - 1)\) and \((p,\,3p + 1)\) makes an angle of \({\rm{4}}{{\rm{5}}^ \circ }\) with the positive direction of the horizontal axis.