🔒 Unlock Full Access

You're currently viewing a preview. Sign up or log in to access all 5 questions and complete solutions.

Question 1
20992

The formula \(h\left( t \right) = 3\cos \left( {\dfrac{\pi }{6}t} \right)\) for \(0 \le t \le 24\), represents the height, \(h(t)\) metres above the mean sea level, where \(t\) is the number of hours after midnight. A boat can only cross the harbour when the tide is at least \(1.5\) metres above the sea-level. At what times can the boat cross the harbour?

\(\begin{array}{*{20}{l}}{midnight{\rm{ }} < t < {\rm{ }}2 \,am}\\{10\, am{\rm{ }} < t < {\rm{ }}2\, pm}\\{10\, pm{\rm{ }} < t < {\rm{ }}midnight\;}\end{array}\)

\begin{align}
&h(t)=3 \cos \left(\frac{\pi}{6} t\right) \\
&\begin{aligned}
\text { Let }\;\; 3 \cos \left(\frac{\pi}{6} t\right) &=1.5 \\
\left.\cos( \frac{\pi}{6} t\right) &=\frac{1}{2} \\
\frac{\pi}{6} t &=\cos ^{-1}\left(\frac{1}{2}\right) \\
\frac{\pi}{6} t &=\frac{\pi}{3}, \frac{5 \pi}{3}, \frac{7 \pi}{3}, \frac{11 \pi}{3}\\
\therefore t&=2,10,14,22
\end{aligned}\\
&\text{From the graph:}\\
&\begin{aligned}
\text{midnight } &<t<2 \mathrm{~am}\\
10 \mathrm{~am}&<t<2 \mathrm{~pm}\\
10 \mathrm{~pm}&<t< \text{ midnight}
\end{aligned}
\end{align}

📚 Want More Questions?

There are 4 more questions available. Create your free account to access the complete question set with detailed solutions.