\(\dfrac{{x - 1}}{2} + \dfrac{{x + 1}}{3}\) when simplified is?
\(\dfrac{{5x - 1}}{6}\)
\(\dfrac{1}{{x + 1}} - \dfrac{1}{x}{\rm{ }}\) when simplified is?
\(\dfrac{{ - 1}}{{x(x + 1)}}\)
\(\dfrac{{2x - 2}}{x} \times \dfrac{{{x^2}}}{{{x^2} - 1}}\) when simplified is?
\(\dfrac{{2x}}{{x + 1}}\)
\(\dfrac{1}{{{x^2} + x}} - \dfrac{1}{{{x^2} - x}}\) when simplified is?
\(\dfrac{{ - 2}}{{x(x + 1)(x - 1)}}\)
Simplify \(\dfrac{3}{{\sqrt {x + 1} }} - \sqrt {x + 1} \)
\(\dfrac{{2 - x}}{{\sqrt {x + 1} }}\)
$$\begin{aligned}\frac{3}{\sqrt{x+1}}-\sqrt{x+1} &=\frac{3-(\sqrt{x+1})^{2}}{\sqrt{x+1}} \\&=\frac{3-(x+1)}{\sqrt{x+1}} \\&=\frac{2-x}{\sqrt{x+1}}\end{aligned}$$