🔒 Unlock Full Access

You're currently viewing a preview. Sign up or log in to access all 5 questions and complete solutions.

Question 1
61449

Find the matrix that corresponds to a reflection in the \(y\)-axis and then a rotation about the origin by \(90^\circ\) clockwise. 

\(\left[ {\begin{array}{*{20}{c}}0&1\\{  1}&0\end{array}} \right]\)

$$\begin{aligned}
&\text{Reflection in y-axis} \rightarrow\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]\\
&\text{Rutation}\ 90^{\circ}| \text{clockwise} \rightarrow\left[\begin{array}{c}\cos \left(-\frac{\pi}{2}\right)-\sin \left(-\frac{\pi}{2}\right) \\ \sin \left(-\frac{\pi}{2}\right)+\cos \left(-\frac{\pi}{2}\right.\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\\
&M=\left[\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right]\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]
\end{aligned}$$

📚 Want More Questions?

There are 4 more questions available. Create your free account to access the complete question set with detailed solutions.