Compound Angle Equations - Questions
Show that \(\displaystyle \,\text{cosec}\, 2\theta +\cot 2\theta = \cot \theta\). Use this result:
a) To find in surd form \(\displaystyle \cot \frac{\pi}{8} \text{ and } \cot \frac{\pi}{12}\)
b) To show, without using a calculator, that:
\[\,\text{cosec}\, \frac{4\pi}{15} + \,\text{cosec}\,\frac{8\pi}{15} + \,\text{cosec}\, \frac{16\pi}{15} + \,\text{cosec}\, \frac{32\pi}{15} = 0\]
i) Prove that \(\tan 4\theta - \tan\theta = \tan 3\theta (1+\tan 4\theta\tan \theta)\)
ii) Using part (i), or otherwise, prove that
\[\tan 4\theta - \tan\theta = \frac{\sin 3\theta}{\cos 4\theta \cos \theta}\]
iii) Hence solve for \(0 \leq \theta \leq \pi\).
\[\tan 4\theta = \tan\theta\]
Prove that
i) \(\cot\theta +\tan\theta = 2\, \text{cosec}\, 2\theta\)
ii) \(\cot\theta - \tan\theta =2\cot 2\theta\)
iii) Hence find, in exact form the values of \(\cot\dfrac{\pi}{12}\) and \(\tan\dfrac{\pi}{12}\).
Given that \(\sin\theta + \cos\theta \neq 0\),
i) Prove that \(\dfrac{2\sin^3 \theta + 2\cos^3\theta}{\sin\theta + \cos\theta} = 2 - \sin (2\theta)\)
ii) Hence or otherwise solve \(\dfrac{2\sin^3 \theta + 2\cos^3\theta}{\sin\theta + \cos\theta} = 1\) in the domain \(-\pi \leq \theta \leq \pi\).
(i) Use the expansion for \(\sin (A+B)\) and the exact values for \(\cos \dfrac{\pi}{4}\) and \(\sin \dfrac{\pi}{4}\) to show that \(\sin \left(x+\dfrac{\pi}{4}\right)=\dfrac{\sin x+\cos x}{\sqrt{2}}\).
(ii) Hence, or otherwise, solve \(\dfrac{\sin x+\cos x}{\sqrt{2}}=\dfrac{\sqrt{3}}{2}\) for \(0 \leq x \leq 2 \pi\).