Arithmetic and Quadratic Equations - Questions

Question 1
17256

If the complex number \(z\) is given by \(z = 1 + \dfrac{1 + i}{1 - i}\) then \({\mathop{\rm Re}\nolimits} \left( z \right) =\) ?

1

Question 2
26290

Find the square root of the complex number \(7+24i\)

\(z = \pm (4 + 3i)\)

Question 3
12229

Given that \(z = 5 - 3i\) then \({\left( {z - \mathop z\limits^ - } \right)^2} = ?\)

\(-36\)

Question 4
12230

Given that \({z_1} = 2 + i\) and \({z_2} = 1 - 2i\) then \(\overline {{z_1} \times {z_2}} = \)?

\(4 + 3i\)

Question 5
12232

Given that \({z_1} = 1 + i\) and \({z_2} = 1 - i\) then \({\rm{z}}_1^3 + z_2^3 = ?\)

-4

Question 6
12236

\(\sqrt {15 + 8i{\rm{ }}} = \,\,?\)

\( \pm \left( {4 + i} \right)\)

Question 7
12238

\(\sqrt {\left( {{n^2} - 1} \right) + 2ni{\rm{ }}} = \,\,?\)

A.

\( \pm \left( {n - i} \right)\)

B.

\( \pm \left( {2n + i} \right)\)

C.

\( \pm \left( {2n - i} \right)\)

D.

\( \pm \left( {n + i} \right)\)

\( \pm \left( {n + i} \right)\)

Question 8
12839

The factors of \(\,{\rm{ }}{z^2} + 2z + 4\) are?

\(\left( {z + 1 - i\sqrt 3 } \right)\left( {z + 1 - i\sqrt 3 } \right)\)

Question 9
12830

Given that \({\rm{ }}z = 1 - 2i{\rm{ }}\)   and  \(w = 1 + i{\rm{ }}\)  then   \(\dfrac{w}{{\mathop z\limits^\_ }} = \) ?

\(\dfrac{3}{5} - \dfrac{1}{5}i\)

Question 10
12831

The square root of \( {7 + 24i{\rm{ }}} = \)?

\( \pm \left( {4 + 3i} \right)\)