If the complex number \(z\) is given by \(z = 1 + \dfrac{1 + i}{1 - i}\) then \({\mathop{\rm Re}\nolimits} \left( z \right) =\) ?
1
Find the square root of the complex number \(7+24i\)
\(z = \pm (4 + 3i)\)
Given that \(z = 5 - 3i\) then \({\left( {z - \mathop z\limits^ - } \right)^2} = ?\)
\(-36\)
Given that \({z_1} = 2 + i\) and \({z_2} = 1 - 2i\) then \(\overline {{z_1} \times {z_2}} = \)?
\(4 + 3i\)
Given that \({z_1} = 1 + i\) and \({z_2} = 1 - i\) then \({\rm{z}}_1^3 + z_2^3 = ?\)
-4
\(\sqrt {15 + 8i{\rm{ }}} = \,\,?\)
\( \pm \left( {4 + i} \right)\)
\(\sqrt {\left( {{n^2} - 1} \right) + 2ni{\rm{ }}} = \,\,?\)
\( \pm \left( {n - i} \right)\)
\( \pm \left( {2n + i} \right)\)
\( \pm \left( {2n - i} \right)\)
\( \pm \left( {n + i} \right)\)
The factors of \(\,{\rm{ }}{z^2} + 2z + 4\) are?
\(\left( {z + 1 - i\sqrt 3 } \right)\left( {z + 1 - i\sqrt 3 } \right)\)
Given that \({\rm{ }}z = 1 - 2i{\rm{ }}\) and \(w = 1 + i{\rm{ }}\) then \(\dfrac{w}{{\mathop z\limits^\_ }} = \) ?
\(\dfrac{3}{5} - \dfrac{1}{5}i\)
The square root of \( {7 + 24i{\rm{ }}} = \)?
\( \pm \left( {4 + 3i} \right)\)