Question 1
12832

Convert \({\rm{ }}\,\sqrt 3 + i  {\rm{ }}\)   into the mod - arg form.

\(2\left( {\cos \dfrac{\pi }{6} + i\sin \dfrac{\pi }{6}} \right)\)

Question 2
12833

Convert \({\rm{ }}\,2\left( {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right){\rm{ }}\) into the cartesian form.

A.

\(\sqrt 2 + i\sqrt 2 \)

B.

\( - \sqrt 2 + i\sqrt 2 \)

C.

\( - \sqrt 2 - i\sqrt 2 \)

D.

\(\sqrt 2 - i\sqrt 2 \)

\(\sqrt 2 - i\sqrt 2 \)

Question 3
12859

Given that, on the Argand diagram the points A and B represent the complex numbers \({\rm{ }}{z_1} = 2i\) and \({z_2} = \sqrt 3 + i\) respectively, then \(\arg \left( {{z_1} + {z_2}} \right) = \,\,?\)

\(\dfrac{\pi }{3}\)

Question 4
12251

Convert \(4i\) into the mod-arg form

\(\,4\left( {\cos \left( {\dfrac{\pi }{2}} \right) + i\sin \left( {\dfrac{\pi }{2}} \right)} \right)\)

Question 5
12256

Convert \(\dfrac{1}{{1 + i}}\) into the mod-arg form

\(\,\dfrac{{\sqrt 2 }}{2}\left( {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right)\)

Question 6
12258

Convert \({\left( {\sqrt 3 + i} \right)}\) into the mod-arg form

\(z=2\left(\cos \dfrac{\pi}{6}+i \sin \dfrac{\pi}{6}\right)\)

Question 7
12261

Convert \(4\left( {\cos \left( { - \dfrac{{5\pi }}{6}} \right) + i\sin \left( { - \dfrac{{5\pi }}{6}} \right)} \right)\) into the cartesian form.

\( - 2\sqrt 3 - 2i\)

Question 8
12262

Convert \(\sqrt 2 \left( {\cos \left( { - \dfrac{\pi }{4}} \right) + i\sin \left( { - \dfrac{\pi }{4}} \right)} \right)\) into the cartesian form

\(1 - i\)

Question 9
26291

(i) Convert \(2+2i\) into mod-arg form. (3 marks)

(ii) Convert \(5(\cos (\dfrac{\pi }{3}) - i\sin (\dfrac{\pi }{3}))\) into the cartesian form (3 marks)

(i) \(z = 2\sqrt 2 (\cos \dfrac{\pi }{4} + i\sin \dfrac{\pi }{4})\)

(ii) \(\omega = \dfrac{5}{2} - i\dfrac{{5\sqrt 3 }}{2}\)

Question 10
119221

Express \(2 \text { cis } \dfrac{5\pi}{6}\) in \( x+i y\) form where \( x, y \) are real

\(-\sqrt{3}+i\)

Question 11
119220

Express \(2 \text { cis } \dfrac{\pi}{6}\) in \( x+i y\) form where \( x, y \) are real

\(\sqrt{3}+i\)