De Moivres Theorem - Questions
Given that \({z_1} = 3\left( {\cos \left( {\frac{\pi }{3}} \right) + i\sin \left( {\frac{\pi }{3}} \right)} \right)\) and \({z_2} = 3\left( {\cos \left( {\frac{\pi }{6}} \right) + i\sin \left( {\frac{\pi }{6}} \right)} \right)\) then \({z_1}{z_2} = \,\)?
Given that \({z_1} = 6\left( {\cos \left( {\frac{\pi }{3}} \right) + i\sin \left( {\frac{\pi }{3}} \right)} \right)\) and \({\rm{ }}{z_2} = 3\left( {\cos \left( {\frac{\pi }{6}} \right) + i\sin \left( {\frac{\pi }{6}} \right)} \right)\) then \({\rm{ }}\dfrac{{{z_1}}}{{{z_2}}} = \,\,\)?
Given that \({z^n} + \dfrac{1}{{{z^n}}} = 2\cos n\,\theta {\rm{ }}\) and by applying the Binomial theorem, show that:
\({\rm{co}}{{\rm{s}}^3}\theta = \dfrac{1}{4}\left( {a\cos 3\theta + b\cos \theta } \right)\) where the values of \(a\) and \(b\) are?