Question 1
12825

By expressing \({\rm{ }}1 + i{\rm{ }}\)  and  \({\rm{ }}1 - i{\rm{ }}\)  in the modulus/argument form and applying De Moivre's theorem then \({\rm{ }}{\left( {1 + i} \right)^3} - {\left( {1 - i} \right)^3} = \,\,\)?

\(4i\)

Question 2
12775

Given that \({z_1} = 3\left( {\cos \left( {\frac{\pi }{3}} \right) + i\sin \left( {\frac{\pi }{3}} \right)} \right)\) and \({z_2} = 3\left( {\cos \left( {\frac{\pi }{6}} \right) + i\sin \left( {\frac{\pi }{6}} \right)} \right)\) then \({z_1}{z_2} = \,\)?

\(9i\)

Question 3
12779

Given that \({z_1} = 6\left( {\cos \left( {\frac{\pi }{3}} \right) + i\sin \left( {\frac{\pi }{3}} \right)} \right)\) and \({\rm{ }}{z_2} = 3\left( {\cos \left( {\frac{\pi }{6}} \right) + i\sin \left( {\frac{\pi }{6}} \right)} \right)\) then \({\rm{ }}\dfrac{{{z_1}}}{{{z_2}}} = \,\,\)?

\(\sqrt 3 + i\)

Question 4
12783

\({\left( {1 + i\sqrt 3 } \right)^4} = \)

\( - 8\left( {1 + i\sqrt 3 } \right)\)

Question 5
12787

\({\left( {1 + i} \right)^6} - {\left( {1 - i} \right)^6} = \)

\( - 16i\)

Question 6
12789

Given that \({z^n} + \dfrac{1}{{{z^n}}} = 2\cos n\,\theta {\rm{ }}\) and by applying the Binomial theorem, show that: 

\({\rm{co}}{{\rm{s}}^3}\theta = \dfrac{1}{4}\left( {a\cos 3\theta + b\cos \theta } \right)\) where the values of \(a\) and \(b\) are?

\(a = 1,\,\,b = 3\)

Question 7
12861

By expressing \(1 + i\) and \(1 - i\) in the modulus/argument form and applying De Moivre's theorem then \({\left( {1 + i} \right)^{12}} + {\left( {1 - i} \right)^{12}} = \,\,?\)

\(-128\)

Question 8
26292

Simplify \({(1 + i)^5} + {(1 - i)^5}\)

\(8\)