Find all the zeros of \(z^3+1=0\)
\(\text{zeros are: } -1,\, \dfrac{1 \pm i \sqrt{3}}{2}\)
Given that 2 is a zero of \(P(z) = {z^3} - 3{z^2} + 4z - 4{\rm{ }}\) then the other zeros are?
\(\dfrac{{1 \pm i\sqrt 7 }}{2}\)
Given that \(1 + i{\rm{ }}\) is a zero of \(P(z) = 2{z^3} - 5{z^2} + 6z - 2\) then the other zeros are ?
\(\dfrac{1}{2}\) and \(1 - i\)
Given that \(2 + i{\rm{ }}\) is a zero of \(P(z) = {z^4} - 2{z^3} - 7{z^2} + 26z - 20\) then the other zeros are?
\(2 - i,\, - 1 \pm \sqrt 5 \)
Given that \({\rm{ }}{z^4} - 2{z^3} + 2{z^2} - 2z + 1 = 0\) has a root of multiplicity of 2 then the roots are?
\(1,1, \pm \,i\)
Given that \({z^4} - 4{z^3} + 7{z^2} - 6z + 2 = 0{\rm{ }}\) has a root of multiplicity of 2 then the roots are?
\(1,1,1 \pm i\)
The zeros of \({\rm{ }}2{x^3} - 3{x^2} + 10x - 15 = 0\) are?
\(x = \dfrac{3}{2}, \pm \,i\sqrt 5 \)
Given that \( - 1 + i\sqrt 2 \,\) is a zero of \({x^3} - x - 6 = 0\) then the other zeros are?
\(2\) and \( - 1 - i\sqrt 2 \)
Given that \(1 + i\) is a zero of \({\rm{ }}{x^3} + 2{x^2} - 6x + 8 = 0 {\rm{ }}\) then the other zeros are?
\(4\) and \(1 - i\)
If \(P(z) = {z^4} - {z^2} - 2z + 2\) has a double root, find all the roots of \(P(z)\).
Roots are \(1,1,-1+i,-1-i\)
Find all the zeros of the polynomial equation \(3{z^3} - {z^2} + 6z - 2 = 0\)
\(z = \dfrac{1}{3},\,\, - \sqrt 2 \,i,\,\,\sqrt 2 \,i\)