Given that \((z - 2)(\bar z - 2) = 4\) represents a circle, then the radius and coordinates of the centre are?
Answer
radius 2, centre (2,0)
Worked Solution
Question 6
12826
\(\left| {z - i} \right|{\rm{ > }}\left| {z + 1} \right|{\rm{ }}\) represents the region :
Answer
\(x + y < 0\)
Worked Solution
Question 7
12827
Given that \({\rm{ }}\omega = \dfrac{{z - 2}}{z}{\rm{ }}\) and \({\rm{ }}\left| z \right| = 1{\rm{ }}\) describes a circle, then the centre and radius is?
Given that \(\omega = \dfrac{{z + 1}}{z}{\rm{ }}\) and \({\rm{ }}\omega {\rm{ }}\) is purely real then the locus of \({\rm{ }}\omega {\rm{ }}\) is?
Answer
\(y = 0,\,\,\,(0,0){\rm{ excluded}}\)
Worked Solution
Question 9
12829
Given that \(\omega = \dfrac{{z - i}}{{z - 2}}{\rm{ }}\) and \({\rm{ }}\omega {\rm{ }}\) is purely imaginary then the locus of \({\rm{ }}\omega {\rm{ }}\) is?