Question 1
20519

Simplify without negative indices \({\left( {3s} \right)^{ - 3}}\)

\(\dfrac{1}{{27{s^3}}}\)

Question 2
14669

Simplify the following expression using positive indices: \(5{m^{ - 4}}\)

\(\dfrac{5}{{{m^4}}}\)

Question 3
14672

Simplify the following expression: \({\left( {\dfrac{{{x^2}}}{2}} \right)^{ - 4}}\)

\(\dfrac{{16}}{{{x^8}}}\)

Question 4
20520

Simplify without negative indices  \({\left( {\dfrac{{{x^2}}}{2}} \right)^{ - 4}}\)

\(\dfrac{{16}}{{{x^8}}}\)

Question 5
20521

Simplify without negative indices  \({\left( {\dfrac{5}{{2{m^4}}}} \right)^{ - 2}}\)

\(\dfrac{{4{m^8}}}{{25}}\)

Question 6
14674

Simplify the following expression: \({\left( {\dfrac{{3a}}{{7b}}} \right)^{ - 2}}\)

\(\dfrac{{49{b^2}}}{{9{a^2}}}\)

Question 7
112880

Simplify \(\left( \dfrac{x^3}{3}\right )^{-3}\)

\(\dfrac{1}{27x^6}\)

Question 8
112879

Simplify \(\left ( \dfrac{x^3}{3}\right )^{-2}\)

\(\dfrac{9}{x^6}\)

Question 9
112878

Simplify using positive indices \(2p^{-3} \times p\)

\(\dfrac{2}{p^2}\)

Question 10
49178

Simplify using positive indices \((\dfrac{5r}{4})^{-1}\)

 \(\dfrac{4}{5r}\)

Question 11
120893

Simplify using positive indices \((\dfrac{2r}{3})^{-2}\)

\(\dfrac{9}{4r^2}\)