Simplify the following expression using positive indices: \(5{m^{ - 4}}\)
\(\dfrac{5}{{{m^4}}}\)
Simplify the following expression: \({\left( {\dfrac{{{x^2}}}{2}} \right)^{ - 4}}\)
\(\dfrac{{16}}{{{x^8}}}\)
Simplify the following expression: \({\left( {\dfrac{{3a}}{{7b}}} \right)^{ - 2}}\)
\(\dfrac{{49{b^2}}}{{9{a^2}}}\)
Simplify without negative indices \({\left( {\dfrac{{3{m^4}}}{{5{n^3}}}} \right)^{ - 2}}\)
\(\dfrac{{25{n^6}}}{{9{m^8}}}\)
Simplify without negative indices \({\left( {\dfrac{{5{x^2}}}{{7{y^3}}}} \right)^{ - 3}}\)
\(\dfrac{{343{y^9}}}{{125{x^6}}}\)
Simplify without negative indices \({\left( {\dfrac{5}{{2{m^4}}}} \right)^{ - 2}}\)
\(\dfrac{{4{m^8}}}{{25}}\)
Simplify using positive indices \(2p^{-3} \times p\)
\(\dfrac{2}{p^2}\)
Simplify \(\left ( \dfrac{x^3}{3}\right )^{-2}\)
\(\dfrac{9}{x^6}\)
Simplify \(\left( \dfrac{x^3}{3}\right )^{-3}\)
\(\dfrac{1}{27x^6}\)
Simplify using positive indices \((\dfrac{5}{a^2})^{-2}\)
\(\dfrac{a^4}{25}\)
Simplify using positive indices \((\dfrac{a^3}{4})^{-2}\)
\(\dfrac{16}{a^6}\)