Simplify without negative indices \({\left( {3s} \right)^{ - 3}}\)
\(\dfrac{1}{{27{s^3}}}\)
Simplify the following expression using positive indices: \(5{m^{ - 4}}\)
\(\dfrac{5}{{{m^4}}}\)
Simplify the following expression: \({\left( {\dfrac{{{x^2}}}{2}} \right)^{ - 4}}\)
\(\dfrac{{16}}{{{x^8}}}\)
Simplify without negative indices \({\left( {\dfrac{{{x^2}}}{2}} \right)^{ - 4}}\)
Simplify without negative indices \({\left( {\dfrac{5}{{2{m^4}}}} \right)^{ - 2}}\)
\(\dfrac{{4{m^8}}}{{25}}\)
Simplify the following expression: \({\left( {\dfrac{{3a}}{{7b}}} \right)^{ - 2}}\)
\(\dfrac{{49{b^2}}}{{9{a^2}}}\)
Simplify \(\left( \dfrac{x^3}{3}\right )^{-3}\)
\(\dfrac{1}{27x^6}\)
Simplify \(\left ( \dfrac{x^3}{3}\right )^{-2}\)
\(\dfrac{9}{x^6}\)
Simplify using positive indices \(2p^{-3} \times p\)
\(\dfrac{2}{p^2}\)
Simplify using positive indices \((\dfrac{5r}{4})^{-1}\)
\(\dfrac{4}{5r}\)
Simplify using positive indices \((\dfrac{2r}{3})^{-2}\)
\(\dfrac{9}{4r^2}\)