\(\dfrac{{ - 12{a^2}b}}{{3a{b^3}}} = \)
\(\dfrac{{ - 4a}}{b^2}\)
\(8{x^2} - 6x + 3 - 11{x^2} + x - 8=\)
\( - 3{x^2} - 5x - 5\)
\(2{a^3}b \times 4ab\)
\(8{a^4}{b^2}\)
If \(x = - 1\) and \(y = 2\) then \({x^2} + xy + {y^2}\)
\(3\)
\(\dfrac{{{{( - 2x{y^2})}^3}}}{{{x^2}{y^4}}}=\)
\( - 8x{y^2}\)
\({( - 3{x^2}{y^3})^2} \div x{y^7} = \)
\(\dfrac{{9{x^3}}}{y}\)
If \(a=-3\) find the value of \(2a+3\)
\(-3\)
If \(p=-2\) and \(q=3\) find the value of \(2p-3y\)
i) \(-13\)
Multiply \(-2x^2\) by \(3y\)
\(-6x^2y\)
Divide \(9x\) by \(3\)
i) \(3x\)
Simplify \(x+2y-3x+y\)
\(-2x+3y\)
From \(7x^2-4x+6\) subtract \(x^2-6x+2\)
\(6x^2+2x+4\)
Multiply \(4x^2\) by \(-2x\)
\(-8x^3\)
Divide \(12x^2y\) by \(-3xy\)
\(-4x\)
Simplify \(2x^2y \times 6xy^3\)
\(12x^3y^4\)
Simplify \(\dfrac{(-2x^2)^3}{-2x}\)
\(4x^5\)
If \(a=-3\) find the value of \(2a^2-6\)
\(12\)
If \(p=-2\) and \(q=3\) find the value of \(p^2-q^2\)
\(-5\)
Multiply \(xy^2\) by \(-x^2y\)
\(-x^3y^3\)
Divide \(4x^2y\) by \(2x\)
\(2xy\)
Simplify \(2ab-3a+2ba-4a\)
\(4ab-7a\)
From \(8x-2y+4\) subtract \(2x+y-8\)
\(6x-3y+12\)
Multiply \(12xy\) by \(3x^2y\)
\(36x^3y^2\)
Divide \(81x^4y^3\) by \(27xy^2\)
\(3x^3y\)
Simplify \((-4a^2b^2)^3\)
\(-64a^6b^6\)
Simplify \(\dfrac{(-ab)^3 \times (ab)^2)}{ab}\)
\(-a^4b^4\)