Remove the brackets and fully simplify \((2x-3)^2-(x+2)^2\)
\(3 x^2-16 x+5\)
Expand and simplify \((2x-1)^2-(2x+1)^2\)
\(-8x\)
Expand and simplify \((x-1)(x^2+x+1)\)
\(x^3-1\)
Expand and simplify \(5\left( {a+b} \right) - 6\left( {a-b} \right)\)
\( - a + 11b\)
Expand and simplify \(3a\left( {a+5b} \right) - a\left( {a-3b} \right)\)
\(2{a^2} + 18ab\)
Expand and simplify \( -4\left( {3x-y+z}\right) + 5\left( {-2x+3y-5z}\right)\)
\( - 22x + 19y - 29z\)
Expand and simplify \(\left( {a+4}\right)\left({a+5}\right)\)
\({a^2} + 9a + 20\)
Expand and simplify \(\left({3a+5}\right)\left({a+4}\right)\)
\(3{a^2} + 17a + 20\)
Expand and simplify \(\left({2a-7}\right)\left({a-6}\right)\)
\(2{a^2} - 19a + 42\)
Expand and simplify \(2\left({a-3}\right)\left({a-1}\right)-\left({a-2}\right)\left({a-4}\right)\)
\({a^2} - 2a - 2\)
Expand and simplify \({\left({a+3}\right)^2}-{\left({a-2}\right)^2}\)
\(10a + 5\)
\({(2x + 1)^2} - {(2x - 1)^2} = \)
\(8x\)
Which expression is the factorisation of \(2{x^2} + 5x - 3\)?
\((2x + 3)(x - 1)\)
\((x - 3)(2x+1)\)
\((2x - 3)(x + 1)\)
\((x + 3)(2x - 1)\)
Factorise \(8{x^2} - 18{y^2}\)?
\(2(2x + 3y)(2x - 3y)\)
\({(2x - 3)^2}=\)
\(4{x^2} - 12x + 9\)
\((3x - 2)(3x + 2) = \)
\(9{x^2} - 4\)
\({(1 - 2x)^2} =\)
\(1 - 4x + 4{x^2}\)
\((3x + 2)(x - 5)= \)
\(3{x^2} - 13x - 10\)
\({(x - 2)^2} - {(x + 2)^2}= \)
\( - 8x\)