The solution to \(\dfrac{{2x + 1}}{3} - \dfrac{{x + 2}}{2} = 1\) is?
\(x=10\)
The solution to \(\dfrac{{3x - 2}}{3} = 4\) is?
\(4\dfrac{2}{3}\)
Given that \({v^2}\) = \({u^2} + 2as\) and \(u = 5 , v = 8\) and \(a = 2\) the value of \(s\) is?
\(s = 9.75\)
Four more than twice a certain number is one less than the number itself. The number is?
\( - 5\)
The solution to \(\dfrac{{x - 1}}{{x + 2}}=\dfrac{{x + 3}}{{x - 1}}\) is?
\(x = - \dfrac{5}{7}\)
The solution to \(\dfrac{{a + 2}}{3} - \dfrac{{a + 1}}{2}=1\) is?
\(a = - 5\)
Solve \(\dfrac{y+3}{y+2}=\dfrac{y+1}{y+4}\)
\(y=-2.5\)
Solve \(\dfrac{5}{x}+\dfrac{3}{2x}=2\)
\(x=3.25\)
Solve \(\dfrac{1}{x+2}+\dfrac{1}{x-3}=\dfrac{1}{(x+2)(x-3)}\)
\(x=1\)
Solve \(26-x=4+x\)
\(x = 11\)
Solve \(\dfrac {{6+a}}{a}=-2\)
\(a = - 2\)
Solve \(\dfrac{{7-4a}}{{2a}}=11\)
\(a = \dfrac{7}{{26}}\)
Solve \(\left({x-2} \right)\left({x+5} \right) = \left({x-3} \right)\left( {x-4} \right)\)
\(x = \dfrac{{11}}{5}\)
Solve \(\left({3x-7} \right)\left({3x+7} \right) = {\left( {3x-5} \right)^2}\)
\(x = \dfrac{{37}}{{15}}\)
Solve \(\dfrac{{x+3}}{5}-\dfrac{{x-2}}{7} = 2\)
\(x = \dfrac{{39}}{2}\)
Solve \(\dfrac{x}{3} + \dfrac{{1-2x}}{5} = \dfrac{1}{6} - \dfrac{{2-3x}}{3}\)
\(x = \dfrac{{21}}{{32}}\)
Solve \(\dfrac{x-2}{3}-\dfrac{x+2}{2}=1\)
\(x =-16\)