The solution to \(18 - 2{x^2} \le 0\) is?
\(x \le - 3\,,\,x \ge 3\)
The solution to \(2{x^2} - 20x + 48 \ge 0\) is?
\(x \le 4\) or \(x \ge 6\)
The solution to \(x(x + 1) > 0\) is?
\(x < - 1\) or \(x > 0\)
\(0 < x < 1\)
\( - 1 < x < 1\)
\(x < 0\) or \(x > 1\)
The solution to \({x^2} + x - 6 \le 0\) is?
\( - 3 \le x \le 2\)
The solution to \(3{x^2} + x - 2 > 0\) is?
\(x < - 1\) or \(x > \dfrac{3}{2}\)
\( - 1 < x < \dfrac{3}{2}\)
\(x < - 1\) or \(x > \dfrac{2}{3}\)
\( - 1 < x < \dfrac{2}{3}\)
\(x < - 1\) or \(x > \frac{2}{3}\)
Solve the inequality \({x^2} - x < 6\).
\( - 2 < x < 3\)
Solve the inequality \(2{x^2} + 5x - 3 \ge 0\).
\(x \le - 3\) or \(x \ge \dfrac{1}{2}\)