Solve the inequality \(|3 x+4|<2\)
\(-2 \leq x \leq-\dfrac{2}{3}\)
Solve the inequality \(|4 x-5|>7\)
\(x<-\dfrac{1}{2} \text { or } x>3\)
Solve the inequality \(\dfrac{6}{|3-x|} \leq 3\)
\(1 \leq x<3, \qquad 3<x \leq 5\)
Solve the inequality \(|5-2 x| \geq 3\)
\(x \leq 1 \text { or } x \geq 4\)
The solutions to \(\left| {2x - 1} \right| < 3\) are?
\( - 1 < x < 2\)
The solutions to \(\dfrac{1}{{\left| {x + 1} \right|}} < 2\) are?
\(x < - 1\frac{1}{2}\) or \(x > - \frac{1}{2}\)
The solutions to \(\left| x \right| + x > 1\) are?
\(x > \dfrac{1}{2}\)
The solutions to \(\left| {x - 1} \right| < 2x\) are?
\(x > \dfrac{1}{3}\)
The solutions to \(\left| {2x - 1} \right| < x\) are?
\(\dfrac{1}{3} < x < 1\)
Solve the inequality \(|x - 2| \le 4\).
\( - 2 \le x \le 6\)
Solve the inequality \(|2x + 1| > 3\).
\(x < - 2\) or \(x > 1\)
Solve the inequality \(|3 - x| < 5\).
\( - 2 < x < 8\)
Solve the inequality \(\dfrac{1}{{|x + 1|}} \ge 2\).
\( - \dfrac{3}{2} \le x < - 1,\,\, - 1 < x \le - \dfrac{1}{2}\)