Use the graphs of \(f(x) = x\) and \(g(x) = {\log _2}x\) to sketch the graph of \(y = x{\log _2}x\).
Refer to the worked solutions for sketch of graph
Use the graphs of \(f(x) = {e^{ - x}}\) and \(g(x) = x\) to sketch the graph of \(y = x{e^{ - x}}\).
Given \(f(x) = 1 - x\) and \(h(x) = 1 + x\) then \(g(x) = f(x) \times \,h(x)\) is?
\(A\)
Given \(f(x) = {x^2}\) and \(h(x) = 1 + x\) then \(g(x) = f(x) \times \,h(x)\) is?
\(C\)
Given \(f(x) = {x^2} - x\) and \(h(x) = {x^2} + x\) then \(g(x) = f(x) \times \,h(x)\) is?
\(B\)
Given \(f(x) = {x^3}\) and \(h(x) = 1 - x\) then \(g(x) = f(x) \times \,h(x)\) is?
\(D\)