Question 1
122962

Consider the function \(f(x)=\dfrac{1}{(x-1)^2}, x<1\)

(i) Sketch the function in the domain \(-3 \leq x \leq 1\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch this function on the same graph in the domain \(0<x \leq 3\)

i) Refer to worked solution

ii) \(f^{-1}(x)=1-\dfrac{1}{\sqrt{x}}\left(f^{-1}(x)<1\right)\)

Question 2
122960

Consider the function \(f(x)=\log _2(x+2)\),

(i) Sketch the function in the domain \(-3 \leq x \leq 3\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch this function on the same graph in the domain \(-3<x \leq 3\)

i) Refer to worked solution

ii) \(f^{-1}(x)=2^x-2\)

Question 3
122961

Consider the function \(f(x)=(x-1)^2, x \leq 1\)

(i) Sketch the function in the domain \(-1 \leq x \leq 3\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch this function on the same graph in the domain \(-1<x \leq 3\)

i) Refer to worked solution

ii) \( f^{-1}(x)=1-\sqrt{x} \quad\left(f^{-1}(x) \leq 1\right)\)

Question 4
122944

Consider the function \(f(x)=\dfrac{1}{x+2}\)

(i) Sketch the function in the domain \(-4 \leq x \leq 2\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch this function on the same graph in the domain \(-4<x \leq 2\).

i) Refer to worked solution

ii) \(\dfrac{1}{x}-2\)

Question 5
122945

Consider the function \(f(x)=-\dfrac{2}{3} x+1\),

(i) Find the inverse function \(f^{-1}(x)\).

(ii) Let \(f^{-1}(x)=g(x)\), show that \(f(g(x))=g(f(x))=x\)

i) \(f^{-1}(x)=\dfrac{-3 x+3}{2}\)

ii) True

Question 6
122946

Consider the function \(f(x)=-\sqrt{1-x}\)

(i) State the domain and range of \(f(x)\).

(ii) Find the inverse function \(f^{-1}(x)\) and state the domain and range.

i) Domain : \(x \leq 1\), Range : \(f(x) \leq 0\)

ii) \( f^{-1}(x)=1-x^2\), Domain : \(x \leq 0\), Range: \(f^{-1}(x) \leq 1\)

Question 7
122947

Consider the function \(f(x)=x^3-1\)

(i) State the domain and range of \(f(x)\).

(ii) Find the inverse function \(f^{-1}(x)\) and state the domain and range.

(i) Domain : all \(x\),  Range : all \(f(x)\)

ii) \(f^{-1}(x)=\sqrt[3]{x+1}\), Domain : all \(x\), Range : all \(f^{-1}(x)\)

Question 8
122948

Consider the function \(f(x)=\log _2(x-1)\)

(i) Sketch the function in the domain \(1<x \leq 5\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch the function on the same graph in the domain \(-5 \leq x \leq 2\).

i) Refer to worked solution

ii) \(f^{-1}(x)=2^x+1\)

Question 9
122949

Consider the function \(f(x)=x(4-x)\)

(i) Sketch the function in the domain \(-1<x \leq 2\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch the function on the same graph in the domain \(-5 \leq x \leq 4\).

i) Refer to worked solution

ii) \(f^{-1}(x)=2-\sqrt{4-x} \quad\left(f^{-1}(x) \leq 2\right)\)

Question 10
122950

Consider the function \(f(x)=\dfrac{x-1}{x+1}\)

(i) Sketch the function in the domain \(-4<x \leq 4\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch the function on the same graph in the domain \(-4 \leq x \leq 4\)

i) Refer to worked solution

ii) \(f^{-1}(x)=\dfrac{x+1}{1-x}\)

Question 11
122951

Consider the function \(f(x)=\log _2(x+1)\)

(i) Find the inverse function \(f^{-1}(x)\).

(ii) Let \(f^{-1}(x)=g(x)\), show that \(f(g(x))=g(f(x))=x\)

i) \(f^{-1}(x)=2^x-1\)

ii) True

Question 12
122952

Consider the function \(f(x)=\dfrac{1}{x-2}\),

(i) Find the inverse function \(f^{-1}(x)\).

(ii) Find the value of \(x\) for which \(f(x)=f^{-1}(x)\)

i) \(f^{-1}(x)=\dfrac{1}{x}+2\)

ii) \(1 \pm \sqrt{2}\)

Question 13
122953

Consider the function \(f(x)=(x-1)^2+2\) for \(x \geq 1\).

(i) State the range of \(f(x)\).

(ii) Find the inverse function \(f^{-1}(x)\) and state the domain of \(f^{-1}(x)\).

i) The range is \(f(x) \geq 2\)

ii) \(f^{-1}(x)=1+\sqrt{x-2}, f^{-1}(x) \geq 1\), Domain is \(x \geq 2\)

Question 14
122954

Consider the function \(f(x)=\dfrac{2+3 e^x}{3}\),

(i) Sketch the function in the domain \(-4 \leq x \leq 4\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch this function on the same graph in the domain \(0<x \leq 4\).

i) Refer to worked solution

ii) \(f^{-1}(x)=\log _e\left(x-\dfrac{2}{3}\right)\)

Question 15
122955

Consider the function \(f(x)=\dfrac{x}{x+1}\)

(i) Sketch the function in the domain \(-4<x \leq 4\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch the function on the same graph in the domain \(-4 \leq x \leq 4\)

i) Refer to worked solution

ii) \(f^{-1}(x)=\dfrac{x}{1-x}\)

Question 16
122956

Consider the function \(f(x)=(x+1)(3-x), x \geq 1\)

(i) Sketch the function in the domain \(1<x \leq 4\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch the function on the same graph in the domain \(-5 \leq x \leq 4\).

i) Refer to worked solution

ii) \(f^{-1}(x)=1+\sqrt{4-x} \quad\left(f^{-1}(x) \geq 1\right)\)

Question 17
122957

Consider the function \(f(x)=\dfrac{1}{x-2}\),

(i) Find the inverse function \(f^{-1}(x)\).

(ii) Let \(f^{-1}(x)=g(x)\), show that \(f(g(x))=g(f(x))=x\)

i) \(f^{-1}(x)=2+\dfrac{1}{x}\)

ii) True

Question 18
122958

Consider the function \(f(x)=\sqrt{4-x}\).

(i) State the range of \(f(x)\).

(ii) Find the inverse function \(f^{-1}(x)\) and state the domain of \(f^{-1}(x)\).

i) Range is \(f(x) \geq 0\)

ii) \(f^{-1}(x)=4-x^2 \), Domain is \(x \geq 0\)

Question 19
122959

Consider the function \(f(x)=2-x^2, x \geq 0\).

(i) Find the inverse function \(f^{-1}(x)\).

(ii) Find the value of \(x\) for which \(f(x)=f^{-1}(x)\)

i) \(f^{-1}(x)=\sqrt{2-x} \)

ii) \(x=1\)

Question 20
122942

Consider the function \(f(x)=2^x\),

(i) Sketch the function in the domain \(-2 \leq x \leq 2\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch this function on the same graph in the domain \(0<x \leq 4\)

i) Refer to worked solution

ii) \(f^{-1}(x)=\log _2 x\)

Question 21
122943

Consider the function \(f(x)=x(x-2)\) for \(x \geq 1\).

(i) Sketch the function in the domain \(1 \leq x \leq 4\).

(ii) Find the inverse function \(f^{-1}(x)\) and sketch this function on the same graph in the domain \(-1<x \leq 4\).

i) Refer to worked solution

ii) Refer to worked solution

Question 22
18953

Consider the function \(f(x) = 2x + 1\),

i) Find the inverse function \({f^{ - 1}}(x)\).

ii) Find the value of x for which \(f(x) = {f^{ - 1}}(x)\)

 

i)  \({f^{ - 1}}(x) = \dfrac{{x - 1}}{2}\)

ii)  \(x = - 1\)

Question 23
18954

Consider the function \(f(x) = \sqrt {x + 1} \),

i) State the domain and range of \(f(x)\).

ii) Find the inverse function \({f^{ - 1}}(x)\) and state the domain \({f^{ - 1}}(x)\)

i)  Domain is \(x \ge - 1\), Range is \(f(x) \ge 0\)

ii) \({f^{ - 1}}(x) = {x^2} - 1\), Domain is \(x \ge 0\)

Question 24
18955

Consider the function \(f(x) = {x^2} - 1\),

i) State domain and range \(f(x)\).

ii) For \(f(x) = {x^2} - 1\) and \(x \ge 0\), find \({f^{ - 1}}(x)\) and state the domain of \({f^{ - 1}}(x)\).

i)  Domain is all \(x\), Range is \(f(x) \ge - 1\)

ii)  \({f^{ - 1}}(x) = \sqrt {x + 1} \,\,\,({f^{ - 1}}(x) \ge 0)\), Domain is \(x \ge - 1\)

Question 25
30812

i) Show that the curve \(y = x^3 - 3x\) has stationary points at \((1, -2)\) and \((-1, 2)\).
ii) Find the largest domain including zero such that the function \(f(x) = x^3 - 3x\) has an inverse \(f^{-1}(x)\).
iii) On the same set of axes sketch the graphs of \(y = f(x)\) and \(y = f^{-1}(x)\).
iv) Find the gradient of the tangent to the curve \(y = f^{-1}(x)\) at the point \(\left(-\dfrac{11}{8},\, \dfrac{1}{2}\right)\).

i) True  ii) \(-1 < x < 1\)  iii) Refer to worked solution  iv) \(\dfrac{-4}{9}\)

Question 26
30815

Consider the function \(f(x) = \dfrac{x}{1-x}\).

i) Show that \(f'(x) > 0\) for all \(x\) in the domain.
ii) State the equation of the horizontal asymptote of \(y = f(x)\).
iii) Without using any further calculus, sketch the graph of \(y = f(x)\).
iv) Explain why \(f(x)\) has an inverse function \(f^{-1}(x)\).
v) Write down the domain of \(f^{-1}(x)\).

i) \(f'(x) > 0 \) for all \(x\)  ii) \(y=-1\)  iii) Refer to worked solution  iv) \(f(x)\) is a monotonic increasing function v)  all \(x \neq -1\)

Question 27
30817

Let \(g(x) = e^{x} - \dfrac{1}{e^x}\) for all real values of \(x\).

i) Sketch the graph of \(y = g(x)\) and explain why \(g(x)\) has an inverse function for all values of \(x\).
ii) On a separate diagram, sketch the graph of the inverse function.
iii) Find an expression for \(y = f^{-1}(x)\) in terms of \(x\).

i) Refer to worked solutions  ii) Refer to worked solutions  iii) \(\ln\left( \dfrac{x + \sqrt{x^2 + 4}}{2} \right)\)

Question 28
30819

Consider the function \(f(x) = 1+\dfrac{1}{x-2}\) for \(x \geq 2\).

i) Give the equations of the horizontal and vertical asymptotes for \(y = f(x)\).
ii)Find the inverse function \(f^{-1}(x)\).
iii) State the domain and range of the inverse function.

i) \(x = 2\) is the vertical asymptote, \(y = f(x) = 1\) is the horizontal asymptote ii) \(2+ \dfrac{1}{x-1}\) iii) \(\text{The domain of } f^{-1}(x) \text{ is } x > 1, \text{The range of } f^{-1}(x) \text{ is } y > 2\)

Question 29
13971

The functions \(f(x) = 4 - {x^2}\) and \(g(x) = \dfrac{1}{{4 - x}}\) are

A.

Both one-to-one 

B.

Neither one-to-one

C.

Only \(g(x)\) is one-to-one

D.

Only \(f(x)\) is one-to-one

\(C\)

Question 30
13972

The inverse function of \(f(x) = 2x - 1\) is 

\({f^{ - 1}}(x) = \frac{{x + 1}}{2}\)

Question 31
13975

\({\rm{For }}f(x) = {x^2} - 2x + 2{\rm{ , }}\,x \ge 1\) the inverse is?

\({f^{ - 1}}(x) = 1 + \sqrt {x - 1} \)

Question 32
13973

\(f(x) = \sqrt {x - 1} \) ,the domain of its inverse is?

\(x \ge 0\)

Question 33
13974

\(f(x) = {\log _e}(x - 2)\) , the range of its inverse is?

\(f(x) > 2\)